Introduction

The advent of lung cancer screening has shown to reduce lung cancer mortality (1,2). Currently the process of lung cancer screening requires the identification of nodules on a chest computed tomography (CT) and subsequent risk stratification of those nodules. In the United States risk stratification is done primarily using LUNG-RADS and places nodules into categories ranging from 1–4 with subcategorization of category 4 into A, B, and X with each category showing increased risk for lung cancer (3). LUNG-RADS is based on well documented clinical observations of pulmonary nodules that show that size and density characteristics (solid, part-solid, and ground glass) are the most accurate imaging features that separate benign or malignant nodules. LUNG-RADS also includes sections that recommend tailoring recommendations based on features typical of intrapulmonary lymph nodes including subpleural location and triangular shape. While LUNG-RADS has proven successful, there is increasing interest in using both clinical and additional radiologic features to further improve risk stratification. Many of the radiologic features that have been proposed to achieve better categorization use computational methods to create the features and are often referred to a radiomic features. To better understand radiomic features and their potential impact on lung cancer screening this paper addresses the following questions: What are the traditional ways pulmonary nodules are currently classified? What are the most common radiomic features used for pulmonary nodule classification? How does the process of deriving radiomic features influence their utility? What is the performance of various radiomic features in their ability to better classify pulmonary nodules in the context of benign vs. malignant nodules, invasive vs. noninvasive adenocarcinomas,
recurrence risk following surgical resection. We present the following article in accordance with the narrative review checklist (available at http://dx.doi.org/10.21037/ccts-2020-lcs-05).

Methods

The primary literature search for this review was done on PubMed using the key terms of radiomics and lung cancer screening on September 1, 2020. In all, there were approximately 482 potential articles retrieved from the database. These articles were then reviewed and categorized into several different categories based on the clinical question they were trying to answer. Review articles were excluded from further consideration. In all 20 articles were found for evaluating factors that affect radiomic feature derivation and use, 28 articles were found evaluating radiomics in the context of classifying benign and malignant pulmonary nodules, 14 articles were found that evaluated radiomics to classify invasive and noninvasive adenocarcinomas, and 5 articles were found that used radiomics to try to predict recurrence risk following surgical resection.

Articles relating to traditional morphologic nodule features and clinical data for classifying pulmonary nodules are numerous and a selected group of key articles were selected to cover the breadth of proposed models for general overview purposes.

Articles related to specific radiomic features were found from reading the articles from the primary literature search.

Discussion

Traditional nodule features

To understand radiomic features, it is important to review the traditional way radiologists have categorized pulmonary nodules and the limitations of this categorization. Until recently most research into pulmonary nodule classification required a radiologist to view a nodule and visually try to categorize it into common patterns. The easiest feature to include was the size of the nodule. It has been shown that size is the most reliable feature that differentiates benign from malignant nodules (4). Less robust features that also have shown differences between benign and malignant nodules include nodule density, border, shape, and location (5) with some attempt to formalize these features (6). A summary of these features is shown in Figure 1.

There are many observational studies that have explored these features as well as clinical features to try and improve the categorization of benign and malignant nodules (7-13), and concentrating on negative predictive value may reduce the overall number of repeat CT scans (14). The major limitation of these methods is that many of the features are subjective and left to the individual radiologist to correctly categorize each feature. The more features being considered the greater the chance for interobserver variability. It is primarily these limitations that have led to LUNG-RADS as being the preferred method. While LUNG-RADS does not include all possible features that may be important, it does create a framework for optimal reproducibility with relatively high sensitivity at the cost of lower specificity.

Radiomic nodule features

Radiomic nodule features are derived quantitative values from the nodule pixel data. These values can correlate to things like nodule location, nodule size, nodule radiodensity, nodule shape, nodule margin, nodule border, and nodule texture. Transform based features and features derived from unsupervised machine learning algorithms have also been considered when building models for classification. We will briefly describe some of the most common radiomic nodule features and how they are derived with a summary in Table 1.

Location features

Location features try to quantify the nodules location in relationship to a set point of the anatomy. For lung nodules, the minimum distance from the carina or pleural surface are most often starting points. In addition to the derived minimum distance, the distance can be decomposed into x, y, and z distances quantifying things such as whether or not the nodule is above or below the carina.

Size features

Nodule size features include volume, surface area, maximum diameter, minimum diameter, and average diameter. To derive these values requires accurate segmentation of the nodule.

Radiodensity features

Features related to nodule radiodensity encompass those features that describe the overall distribution of the pixel...
data within the nodule. These features are also referred to as first-order statistics in texture analysis as they are only considering each pixel values in isolation and give a global picture of the pixel data (15). They most often include the mean pixel value, median pixel value, maximum pixel value, minimum pixel value, skewness, kurtosis, entropy, and uniformity. While the mean, median, maximum, and minimum pixel value are self-explanatory, we will briefly describe the other features.

Skewness is the measure of asymmetry and deviation from the normal distribution. A skewness of zero implies a normal distribution. A skewness greater than 0 implies the distribution is skewed to the right (more values that have higher intensity) while a skewness less than 0 implies the distribution is skewed to the left (more values with lower intensity values).

Kurtosis describes the peakedness of the distribution. If the kurtosis is three then the distribution is a normal

Figure 1 Traditional nodule features used to classify nodules by radiologists.
<table>
<thead>
<tr>
<th>Radiomic feature type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiodensity</td>
<td>Measure of asymmetry</td>
</tr>
<tr>
<td></td>
<td>Likelihood of an extreme value within the distribution</td>
</tr>
<tr>
<td></td>
<td>Similarity of the pixel values</td>
</tr>
<tr>
<td></td>
<td>Randomness within the pixel values</td>
</tr>
<tr>
<td>Shape</td>
<td>Quantifies how close to a sphere a given volume is</td>
</tr>
<tr>
<td></td>
<td>Measures how well something fits into a defined shape</td>
</tr>
<tr>
<td>Margin</td>
<td>Quantifies how different the pixels are at the nodule margin</td>
</tr>
<tr>
<td></td>
<td>Quantifies complexity of the boarder</td>
</tr>
<tr>
<td>Second order texture features (GLCM)</td>
<td></td>
</tr>
<tr>
<td>Homogeneity</td>
<td>How close the distribution of the values in the matrix are to the diagonal</td>
</tr>
<tr>
<td>Entropy</td>
<td>Measures texture irregularity</td>
</tr>
<tr>
<td>Uniformity</td>
<td>Measures how uniform the pixels are and equals 1 when all pixels are the same value</td>
</tr>
<tr>
<td>Contrast</td>
<td>Measures local intensity variation and is higher when there are more values away from the diagonal</td>
</tr>
<tr>
<td>Higher order texture features (GLSZM)</td>
<td></td>
</tr>
<tr>
<td>Short zone emphasis</td>
<td>Measures pixel distribution of small zones and is higher for fine textures</td>
</tr>
<tr>
<td>Intensity non-uniformity</td>
<td>Measures similarity of pixel intensity throughout the image and is small if they are similar throughout the image</td>
</tr>
<tr>
<td>Zone percentage</td>
<td>Measures the homogeneity of zones in an image in a specific direction and is largest when the size of a zone is 1 for all intensities</td>
</tr>
<tr>
<td>Intensity variability</td>
<td>Measures the similarity of intensities throughout the image and is small if values are similar</td>
</tr>
<tr>
<td>Size zone variability</td>
<td>Measures similarity of the size of zones of various intensities throughout the image and is small when the sizes are similar</td>
</tr>
<tr>
<td>Higher order texture features (GLRLM)</td>
<td></td>
</tr>
<tr>
<td>Short run emphasis</td>
<td>Measures distribution of short runs and is larger for fine textures</td>
</tr>
<tr>
<td>Grey-level non-uniformity</td>
<td>Measures the similarity of intensity values throughout the image and is small if intensity values are alike throughout the image</td>
</tr>
<tr>
<td>Run percentage</td>
<td>Measures the homogeneity and distribution of runs in a specific direction and is largest when the length of runs is 1 for all intensity values in the given direction</td>
</tr>
<tr>
<td>Intensity variability</td>
<td>Measures the similarity of intensity values throughout the image and is small if intensity values are alike throughout the image</td>
</tr>
<tr>
<td>Run length variability</td>
<td>Measures the similarity of the size of zones throughout the image and is small if the run lengths are alike throughout the image</td>
</tr>
<tr>
<td>Higher order texture features (NGTDM)</td>
<td></td>
</tr>
<tr>
<td>Coarseness</td>
<td>Measures granularity within an image</td>
</tr>
<tr>
<td>Complexity</td>
<td>Measures the different intensity values throughout the image and is higher if there is a larger variety of values</td>
</tr>
<tr>
<td>Contrast</td>
<td>Measures intensity differences between neighbouring regions and is higher the more they differ</td>
</tr>
<tr>
<td>Busyness</td>
<td>Measures how much of a change in pixel intensity values there is from one pixel to the next and it is higher when changes are greater</td>
</tr>
</tbody>
</table>

GLCM, grey level co-occurrence matrix; GLSZM, grey level size-zone matrix; GLRLM, grey level run length matrix; NGTDM, neighbourhood grey tone difference matrix.
distribution. If the kurtosis is greater than three, it implies that it is a sharper distribution with values concentrated around the mean but with thicker tails meaning there is a higher probability of an extreme value. If kurtosis is less than three the distribution is flatter with a wider peak meaning there are less extreme values but the range is spread out more broadly around the mean.

Entropy is a measure of texture randomness or irregularity. The greater the entropy the more heterogeneous and varied the pixel data. Conversely uniformity is the sum of the squared elements in the region of interest and takes on higher values when the pixels have a similar value.

Shape features

There are many methods that can be used to describe a nodule’s shape. The most common features used are sphericity (16) and compactness (17). More details about additional shape features are discussed in a review article by Yang et al. (18).

Margin features

Margin features attempt to quantify the subjective radiologist classification of a nodule as being either smooth, irregular, or spiculated. Box counting fractal analysis is a common method for quantifying irregularity of a shapes margin using the fractal dimension (19). The most commonly used fractal method uses a box counting method with higher values correlating to more complicated margins. Methods for looking at margin sharpness have also been implemented looking at the distribution of pixel values along the margins and deriving first-order texture features on the pixel values.

Second and higher order texture features

Second order and higher order texture features are features that take into account more than one pixel. Second-order statistics take into account one additional pixel a defined distance and angle from each pixel in the ROI. The algorithm then counts co-occurrences of pixels with similar values for each angle and create what are called a grey-length co-occurrence matrices (GLCM) for each angle and uses it to calculate features related to heterogeneity including homogeneity, uniformity, contrast, and entropy (20). Homogeneity will be large if the co-occurrences cluster along the diagonal of the matrix while contrast will be large if the co-occurrences cluster away from the diagonal. Images with large values for contrast in a given direction implies that there are increased linear structures when going that direction. Uniformity measures the sum of squared elements in the matrix. It takes a value between 0 and 1 and is 1 when all pixels have similar values and co-occur together. Entropy is a measure of randomness. Inhomogeneous textures have low entropy while homogenous textures will have high entropy. Changes in defined distance, angles being considered, and how you define when pixels co-occur all contribute to the features being produced, and as such many more second order features are usually considered compared to their first-order counterparts.

Higher order texture features consider three or more pixels in relation to another pixel. The three most common algorithms used create a grey level size-zone matrix (GLSZM), a grey level run length matrix (GLRLM), or a neighborhood grey tone difference matrix (NGTDM) (21-23). GLSZM considers regional variations and produces values such as short zone emphasis, intensity non-uniformity, zone percentage, intensity variability, and size zone variability. GLRLM also considers regional variations and produces features such as short run emphasis, grey-level non-uniformity, run percentage, intensity variability, and run length variability. NGTDM considers more local variations and produces features such as coarseness, complexity, contrast, and busyness. Because of their complexity higher order texture features tend to have more variables that can be set and can produce a larger number of potential features to consider.

Transformed-based features

Transformed-based features most often use a wavelet transform to capture both frequency and location information in order to extract certain levels of noise to enhance potential textures within an image that may be relevant. First, second, and higher order textural analysis can then be applied to the transformed image. Given the additional filtering, these methods can produce an even greater number of features for a given ROI.

Features derived from unsupervised machine learning

Unsupervised machine learning algorithms can be used to find common patterns among nodules. These methods are often referred to as clustering algorithms and are designed to group data having similar patterns. When applying
these algorithms to nodules, nodule ROI pixel data can be divided into smaller blocks. Blocks can then be compared using these methods and grouped depending on similarity into groups called clusters. Presence of a block belonging to a particular cluster can then be used as a feature for classification. An example of such a method has been used to differentiate between EGFR subtypes (24).

Perinodular features

Perinodular features use the pixel data surrounding the nodule ROI to calculate texture features, clustering features, and transformed-based features. These features can then be used with the nodule features for potentially more robust classification of nodules.

Dynamic features

Dynamic radiomic features are features derived from changes in radiomic feature over time. This may be applicable for multiphase contrast studies or follow up imaging of a nodule.

Variation in radiomic nodule features

To derive radiomic nodule features there are many steps that must take place (Figure 2). This section will briefly describe each of these steps and the parameters that can lead to variation in the different nodule features.

Acquisition of CT

When a CT is acquired there are many variable parameters that must be set that determine the time the scan takes and the amount of noise that will be produced. The primary parameters that affect these outcomes include mA, Kvp, and gantry. Changing these parameters can create differences in background noise and may artifactually increase or decrease values of derived texture parameters. Fixed parameters can also cause variations in the background noise of the scan and thus radiomic feature variation. These parameters include differences in scanner models, vendor of the CT scanner, size of the CT scanner, and the size of the patient. It has been shown that derived texture features can vary across scanners often grouping together based on the CT scanner rather than the actual texture (25). In addition, breathing phase and mA have also shown significant variation among radiomic features (26). Methods have been proposed to reduce this variation and find more robust features (27). It has also been shown that scanning during certain parts of the breathing cycle may reduce variability (28).

Reconstruction and postprocessing of CT images

When a CT is performed it generates what is called a sinogram. This is the raw data produced by the CT scanner. In order for the CT scanner to produce images it must decompose the sinogram. Depending on the algorithm used this can result it images of various slice thicknesses and noise. The algorithm used to produce an image is
usually referred to as a kernel and differences in the kernel can change the values of texture features. How much noise an image has will play a role in derived texture features. Using different kernels and filter sizes have shown to cause variation in derived texture features (29). It has also been shown radiomic features can be affected by slice thickness and reconstruction algorithms (30,31). Some work has been done to adjust for this noise when comparing different kernels (32).

Nodule segmentation

Once images are obtained the nodules must be identified and parsed from the image. For most studies this is a manual process performed by a radiologist who is sometimes assisted by a semi-automated segmentation algorithm. This can lead to variability predominantly in radiomic features relating to shape and border (33). Semiautomatic volumetric segmentation has been shown to have better correlation among extracted radiomic features than manual segmentation (34) and differences in segmentation algorithms have been shown to effect consistency of extracted textual features (35). Recent advances in deep neural networks have the potential to fully automate segmentation in the near future and hopefully reducing this type of variation (36,37).

Radiomic feature derivation

Depending on the radiomic feature there may be parameters that are set by the user that can have an effect on the derived value. This is particularly true for second and higher order texture features, transform based features, and features derived from unsupervised machine learning algorithms. How intensity values of CT and PET data is grouped together (aka binning) has been shown to have significant effects in the variability of texture features with optimal number of intensity values of 128 showing the least variability (38,39). Radiomic texture features derived from GLCM may be more robust compared to features derived from other matrices (40). Shape features can be affected by a nodule size (41). Welch et al. also showed tumor size can create variation in derived radiomic features. To limit such sources of variation they propose to use open-source software to increase accountability and reproducibility, compare features to existing morphologic features such as tumor volume, compensate for overlapping features, evaluate features for dependencies using statistical analysis, and pre-process data to ensure good image signal quality (42). There has also been work showing dynamic radiomic texture features may be more robust than texture features derived from a single time point (43).

Statistical analysis

The analysis done to evaluate the performance of radiomic features can have a significant impact on the perceived clinical usefulness. For example, Kaplan-Meier survival curves and associated P values can vary widely depending on how cutoff values are set for derived radiomic features (44).

Radiologist compliance

Using texture features in clinical decision making will require the radiologist to be fully involved. Miles et al. found that when implementing texture features in routine clinical practice that radiologists only showed 59% compliance decreasing with time. User friendly software, ease of incorporation into reports, and seamless integration into PACS all played a role in compliance (45).

Performance of radiomic nodule features

There have been many proposed applications for texture features as it relates to evaluating pulmonary nodules. The primary application for lung cancer screening is differentiating benign and malignant nodules. In addition, differentiating between invasive and noninvasive adenocarcinomas and predicting surgical recurrence risk in patients with confirmed cancer are also active areas of research that could impact lung cancer screening workflows. In this section we will summarize the current research relating to these potential applications.

Predicting benign vs. malignant nodules

Research related to distinguishing benign and malignant pulmonary nodules using radiomic features has exploded over the past ten years. The majority of studies are retrospective studies without independent data sets for validation. This makes comparison between methods difficult as there is no standard data set for comparison. Most studies also do not compare their accuracy with existing methods that do not use radiomic features, also complicating assessment of their true value.

Initial work exploring texture features for distinguishing
benign and malignant nodules were limited to small data sets and lack of validation. These studies explored primarily first-order texture features, second-order texture features, and fractal analysis. Analysis was primarily focused on whether there was a significant difference between the benign and malignant group for a given feature and did not formally evaluate classification performance. Entropy and correlation were initial features found to show a difference between the two groups (46,47). An early study on fractal analysis suggested values derived from 2D and 3D box counting methods of the binary and grey-scale pixel data showed significant differences between benign and malignant nodules as well as between adenocarcinoma and squamous cell carcinoma (48).

Following these initial studies, a variety of radiomic features were explored to create prediction models. Studies using only first-order texture features using small data sets appeared to show conflicting features that were important with mean attenuation and entropy being features that showed differences over multiple studies (49-51). There were no validation sets and area under the curve (AUC) were high, ranging between 0.864–0.93. A more recent study looking at only kurtosis and skewness showed differences between benign and malignant nodules; however, AUC was only approximately 0.7 for both features and no combined model was explored (52).

Some early studies also looked at derived features from unsupervised methods. For example, features derived from principle component analysis on a large number of manually segmented benign and malignant nodules were filtered and used to train a support vector machine classifier showing AUC of 0.908 on the training set (53).

Studies using additional radiomic features outside of texture are now more common. In addition, the number of texture features being considered are also increasing due to wavelet transforms (54). While many of these use their own unique data sets, several use a standard database of nodules from the LIDC dataset. Models using this standard data set had AUCs ranging from 0.927–0.97 with the highest using shape and texture features in conjunction with random forests (55-58). The model having the highest AUC combined shape features, texture features, and features derived from a deep convolution neural network (58). A simple model using only margin and texture features was able to achieve an AUC of 0.856 using a random forest tree method. They also showed that features derived from statistical models were better than features derived from simple correlation (59).

There has been some work in incorporating perinodular texture features into prediction models for both benign and malignant nodules. One of these models showed good performance on both training and validation training sets after clustering features to create common centroid features that could then be used to train a neural network. They were able to get an AUC of 0.965 on an independent data set as compared to 0.594 using diameter alone (60). An additional model used to distinguish between malignant nodules and granulomas used intra and perinodular texture features to train a support vector machine. The model had an AUC of 0.8 on an independent dataset and improved classification performance compared to a model only using intramodular texture features and a deep neural network trained on the whole nodule volume (61).

While most studies did not compare the performance of their methods to traditional methods such as LUNG-RADS there has been work that compared the two. Using a variety of radiomic features Mao et al. created a statistical model that had a sensitivity of 0.8 and specificity of 0.9 compared to a sensitivity of 0.9 and specificity of 0.77 for LUNG-RADS (62). This study raises the possibility that these models may add specificity to increase performance at the cost of lost sensitivity.

There have also been recent studies that have broken down what features are most reproducible and useful for classification. One suggests that first order statistics and NGLDLM do not produce reproducible features that can distinguish between benign and malignant nodules. Its methods favored texture features derived from GLCM and GLRLM (63). It is difficult to know how accurate this finding is given there was no description of the three data sets they used for extracting features, training their model, and validating their model. An additional study broke down features found to be reproducible and able to distinguish between benign and malignant nodules. They found 14 of 330 GLCM, 1 of 49 first-order features, and 5 or 18 shape features to fit their criteria. They found that a model using shape features performed the best (64). While the studies are limited, they seem to suggest first order statistics may not have a significant role to play in differentiating benign and malignant nodules compared to features derived from shape and texture features derive from second- and higher-order statistics.

Predicting noninvasive and invasive adenocarcinomas

There have been several studies exploring the use of
radiomic features to distinguish invasive and noninvasive adenocarcinomas in ground glass and part-solid nodules. Much of this work primarily focused on morphologic features and first- and second-order texture features (65-72). AUCs of these studies ranged from 0.78–0.98. The features found to be significantly different between the two groups varied greatly with size features such as volume and texture features such as entropy being the most common showing differences between the two groups. Generally, it was found that nodules with higher entropy and lower homogeneity appeared to be more associated with invasive adenocarcinomas. One of the studies found that adding simple texture features did not improve performance compared to simply using the percent solid component and size which raises the possibility there may not be much added value to using these low level texture features compared to current practice guidelines that suggest following changes in the solid component of the nodule (71).

A more recent study looking at texture, morphologic, and clinical data for both 2D ROIs and 3D VOIs found that maximum diameter and spiculation were the best morphologic features and that only 11 of 1,125 texture features were found to be significant. There best performing model used the 2D features only with AUC of 0.938 compared to 0.753 for a 3D based feature model. Clinical data did not appear to add any value to the model (73).

There has also been work using machine learning derived features for classification of invasive and noninvasive adenocarcinomas for both nonenhanced and enhanced chest CTs that showed a maximum AUC of 0.89. There was not a significant difference between models using features derived from the unenhanced and enhanced CTs (74).

Combining radiomic features and deep learning machine learning has also been studied showing an AUC of 0.966 when combining methods while demonstrating an AUC of 0.744 and 0.847 using deep learning and radiomic features respectively (75).

Predicting surgical recurrence risk

There are a small number of studies looking at using radiomic features to predict recurrence risk of surgically resected tumors. Akinci et al. extracted morphological, first-order statistical, higher-level textural features, and fractal-based features from the gross tumor volume and peritumoral volume. They used these features to predict tumor recurrence in stage IA and IIB tumors that were resected. They then compared the predictive value of their model to the typical TNM staging and found it improved performance from an AUC of 0.68 to and AUC of 0.76 (76).

Depeursinge et al. looked at a group of 101 patients with surgically resected stage I adenocarcinomas and created a model using wavelet-based features from the entire nodule or only the portion containing a solid component. They found that using the solid component only improved the overall performance of the model with the best model achieving an AUC of 0.81 (77).

There are several studies looking at primarily texture features to try and predict tumor recurrence risk following surgery for early stage NLCLC from CT and PET pixel intensities. One study with a small sample size found gray-level correlation and sum variance tended to be higher in the local recurrence group (78). A larger study of 194 patients created a logistic regression model using extracted texture features at both 1 and 5 mm CT slice thickness and found that skewness and kurtosis were poorly correlated between the different slice thicknesses while entropy and mean attenuation were highly correlated. Overall their model was able to achieve and AUC of 0.81 (79). A small study of 55 patients looking at FDG-PET data found that tumor stage and intensity variability were the only independent predictors of progression free survival after multivariate analysis. They did not attempt to build a predictive model (80).

Summary

The use of computational nodule features has the potential to improve accuracy of lung cancer screening and subsequent decision making of lung cancer management however there are still many hurdles to overcome due to variabilities in derived radiomic features secondary to differences in imaging acquisition, image reconstruction, nodule segmentation, and algorithm parameters used for computing various radiomic nodule features. While efforts are being made to standardize workflows and methods to extract radiomic features, there has been no widespread adoption of any particular feature. Institutions interested in using these features currently would need to standardize their own workflows and establish features that they feel are reliable in the setting of their institution.

Acknowledgments

Funding: None.
Footnote

Provenance and Peer Review: This article was commissioned by the Guest Editor Sandra Starnes for the series “Lung Cancer Screening” published in Current Challenges in Thoracic Surgery. The article has undergone peer review.

Reporting Checklist: The author has completed the Narrative Review Checklist (available at http://dx.doi.org/10.21037/ccts-2020-lcs-05)

Conflicts of Interest: The author has completed the ICMJE uniform disclosure form (available at http://dx.doi.org/10.21037/ccts-2020-lcs-05). The series “Lung Cancer Screening” was commissioned by the editorial office without any funding or sponsorship. The author has no other conflicts of interest to declare.

Ethical Statement: The author is accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

3. Lung Rads [Internet]. [cited 2020 Sep 17]. Available online: https://www.acr.org/Clinical-Resources/Reporting-and-
4. Data-Systems/Lung-Rads

45. Miles KA, Squires J, Murphy M. Radiologist Engagement as a Potential Barrier to the Clinical Translation of Quantitative Imaging for the Assessment of Tumor Heterogeneity. Acad Radiol 2018;25:935-42.

doi: 10.21037/ccts-2020-lcs-05